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The nonlinear Fourier analysis of wave motion governed approximately by the 

Kortewegde Vries (KdV) equation on the infinite line is the central point of discussion, We 

assume that the wave amplitude is recorded in the form of a discrete space or time series 
which is determined either by experimental measurement or by computer simulation of the 

physical system of interest. We develop numerical data analysis procedures based upon the 
scattering transform solution to the KdV equation as given by Gardner et al. [ 11, We are 

motivated by the observation that historically the Fourier transform has been ubiquitously 

used to spectrally analyze linear wave data; here we develop methods for employing the scat- 
tering transform as a tool to similarly analyze nonlinear wave data. Specifically we develop 

numerical methods to evaluate the direct scattering transform (DST) of a space or time series: 

the approach thus provides a basis for analyzing and interpreting nonlinear wave hehavior in 

the wavenumber or frequency domain. The DST spectrum separates naturally into soliton and 

radiation components and may be simply interpreted in terms of the large-time asymptotic 
state of the infinite-line KdV equation. ‘( 1991 Academic Press, Inc 

1. INTRODUCTION 

The study of the physics of wave motion has historically benefited from analyti- 
cal, numerical, and experimental exploitation of the linear Fourier transform (FT) 
(Ablowitz and Segur [ 11, Bendat and Piersol [Z, 31). One reason for the wide 
applicability of this method is that many linear partial dlxferential equations (i.e., 
linear wave equations, LWEs) may be solved exactly using Fourier methods. Thus 
while most physical systems are nonlinear, the fact that a closely related linear 
system may be exactly solvable by the Fourier transform often provides key insight. 
An important intermediate step in these calculations is the appearance of the 
Fourier wavenumber of frequency spectrum. While the wave motion itself may be 
a rather complicated function of time, the time evolution of the Fourier spectrum 
for linear wave motion is quite simple: the Fourier amplitudes are constants, while 
the phases vary sinusoidally (e”“‘). Because of this simple behavior, the Fourier 
spectrum is often viewed as more fundamental than the wave motion itself, e.g., the 
Fourier components constitute the normal modes of the system. Furthermore, given 
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the Fourier spectrum and the dispersion relation (easily found from the LWE) the 
wave motion is known for all time and is represented as a linear superposition of’fhe 

sinusoidal normal modes. 
In the last 20 years there has been considerable progress in the understanding of 

certain nonlinear wave equations (NLWEs). Beginning with the work of Gardner, 

Greene, Kruskal, and Miura [4], who found the exact solution to the Kortewegg 
de Vries equation on the infinite interval for a suitably localized initial wave, a 
major revolution has occurred in mathematical physics. Solutions to entire classes 

of NLWEs on the infinite interval have been found [ 1,412] (these include, in 
particular, the KdV, nonlinear Schroedinger, sine-Gordon, and modified KdV 
equations) and the methods have been christened the inverse scattering transform 

(IST). It can be shown that IST is a nonlinear generalization of the Fourier trans- 
form [ 1, 51. Several wave equations are now known to have solutions not only on 
the infinite interval, but also on the periodic domain as well (these include the KdV 
113, 141, nonlinear Schroedinger [lS] and sine-Gordon equations [16]). These 
periodic solutions have been shown to be nonlinear generalizations of Fourier series 
[ 17-201. Certain discrete wave equations on the infinite line (continuous in time, 
discrete in space) also have exact solutions given by the ST: [Zl] (see [ 11 for 

a review). One of the key features of the ST is that it approaches the Fourier 
transform in the small amplitude, linear limit; in this way the ST solution covers 
not only the nonlinear problem but also the associated linearized problem as well. 

Given the availability of these new mathematical methods, in analogy with 
historical use of the Fourier transform, we have suggested that the ST be applied 
to the study of various problems in nonlinear wave physics [22&30]. The feature 

which we have exploited is that the direct scattering transform (DST) is a 
wavenumber representation of a nonlinear signal (assumed governed by some 
NLWE) just as the direct Fourier transform (DFT) is a wave number representa- 
tion of a linear signal. One advantage of the DST is that it provides a spectral 

representation of the wave motion at one (singular-perturbative) order of 

approximation higher than the associated linear problem and, hence, one order of 
approximation higher than the linear Fourier transform. Thus one is “closer” (in 

the wavenumber domain) to the actual nonlinear physics of a particular system. 
Using this idea we have conducted preliminary nonlinear spectral analyses of wave 
data from the ocean [25, 291 and the laboratory [28]. 

Application of the algorithm developed herein has led to the resolution of the 
Zabusky and Kruskal problem [ 19, 201, which addresses how infinite-line solitons 
are related to solitons on the periodic domain. Other investigators have studied 
periodic spectral problems for the Toda lattice [30], and the sine-Gordon and 

nonlinear Schroedinger equations [31]. These important papers have considered 
nonlinear problems with a small number of excited degrees of freedom (i.e., 
nonlinear Fourier modes); this contrasts with the present series of papers which 

emphasizes the study of systems which may range up to several thousand degrees 
of freedom. 

This paper has been written not only to give the development of an algorithm for 
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the DST but also to provide the reader with the tools for rapid implementation of 
the procedure and for understanding the physical implications of its use. We do not 
assume that the reader is an expert in scattering transform theory. The paper is the 
first in a series of papers which describes computer algorithms which we loosely call 
“nonlinear signal processing methods.” These are based upon both infinite-interval 
and periodic ST theory for the KdV equation. The methods are analogous to the 
well-known linear signal processing techniques for the Fourier transform. We 
emphasize three principal operations of the algorithms: 

(1) Generation of a wavenumber (or frequency) domain spectrum. Given a 
computer-generated signal or a measured space or time series of some localized or 
periodic wave motion, compute the direct scattering transform (DST); i.e., generate 
the wavenumber (or frequency) space representation of the input signal. 

(2) Filtering. The inverse scattering transform (IST) is the inverse of the DST 
operation; i.e., the IST reconstructs the signal given the DST spectrum. In order to 
filter a signal of certain wavenumber or frequency components one first eliminates 
from the spectrum the unwanted components and then the nonlinear, filtered signal 
is reconstructed with the IST. 

(3) Time evolution. The wave motion may be evolved forward or backward 
in time t simply by selecting the value of t desired and then executing the IST algo- 
rithm. The output of the IST operation is the signal advanced to the specified time. 
In the filtering operation of (2) above, the time t is normally taken to be zero. 

This paper (I) is the first in a series which discusses algorithms for computing the 
direct and inverse scattering transforms for both the whole-line and periodic KdV 
equations. The infinite-interval DST algorithm is presented herein and numerical 
tests and an error analysis are given in II. A restricted nonlinear filtering algorithm, 
designed to extract the soliton component from a time series, is discussed in II. The 
infinite-interval IST is addressed in III. Generalized nonlinear filtering on the 
infinite line is also discussed in III, with several concrete examples given to illustrate 
the method. The DST and IST for the periodic KdV equation are developed in 
subsequent papers [32]. 

The rest of this paper is organized as follows. In Section 2 we review the Fourier 
transform solution to the linearized KdV equation. These results provide a basis for 
discussing the scattering transform solution to the KdV equation on the infinite 
interval (Section 3). The relationship between the linear Fourier transform and the 
scattering transform is discussed in Section 4, where particular emphasis is placed 
on those results necessary for development of the numerical algorithm for the DST, 
and for physically interpreting nonlinear wave motion governed by the KdV equa- 
tion. Section 5 reviews some of the important assumptions leading to discrete 
Fourier methods; Section 6 discusses how we modify and elaborate on these to 
develop a set of assumptions which the DST algorithm must satisfy. In Section 7 we 
conclude that a need exists for a new algorithm which more nearly meets these 
requirements set forth in Section 6. To develop such an algorithm we describe in 
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Sections 8 and 9 the exact DST for a piecewise constant initial wave form which is 
partitioned at equal spatial intervals Ax; the result is a pseudo-discretization of the 
eigenvalue problem associated with the DST. Section 10 shows how the discrete 
DST solution may be simplified so that it depends only on Ax rather than x itself. 
This resolves certain problems with “exploding exponential” solutions which often 
occur in the discrete (soliton) spectrum; roundoff error is reduced to tolerable levels 
and computed numbers stay within the range of most computers. In Section 11 we 
develop recursion relations which allow for rapid machine calculation of the DST. 
Finally in Section 12 we discuss how the DST algorithm approaches the discrete 
Fourier transform in the small amplitude limit. 

2. THE FOURIER TRANSFORM SOLUTION 

TO THE LINEARIZED KdV EQUATION 

One can describe the approximate motion of infinitesimal amplitude, long disper- 
sive waves in shallow water by the linearized KdV equation (set CI = 0 in Eq. (3.1) 
below): 

‘?r+Ccll?~+8~.x.~x=o~ (2.1) 

We write the equation in dimensional form, where ~(x, t) is the amplitude of the 
free surface, c0 = ( gh) 1’2 is the linear phase speed, g is the acceleration of gravity, 
h is the water depth, and /? = c,h2/6 is the constant coefficient of the dispersive term. 
Subscripts refer to partial derivatives with respect to space x or time t. Equation 
(2.1) is written in laboratory coordinates and has the dispersion relation 

w  = k( cg - /hv). (2.2) 

The KdV equation (( 3.1) below) and its linearized form (2.1) appear in many other 
physical contexts (see Chap. 4 of [ 11). The constant coefficients change their 
form depending upon the physics of the problem; to apply the spectral analysis 
techniques in this paper one uses constants suitable for a particular application 
or one rescales the KdV equation in terms of dimensionless variables to give only 
numerical constants. 

One can use the Fourier transform to find the solution to (2.1) on the infinite 
interval (-cc <x < co) for the Cauchy initial value problem, i.e., for ~(x, t = 0) 
given, we seek ~(x, t) for all time t. This may be done by first forming the direct 
Fourier transform (DFT) of the initial wave 17(x, 0): 

F(k) = Ia y(x, 0) exp( -ikx) dx. 
% 

The Fourier spectrum changes in time by the simple relation 

(2.3) 

F(k, t) = F(k) exp( - iwr). (2.4) 



288 A. R. OSBORNE 

The time evolution of the initial wave is then described by the inverse Fourier 
transform (IFT): 

s 
zc F(k, t) exp(ikx) dk. (2.5) 

I 

Validity of the Fourier method requires that the usual Dirichlet conditions be 
satisfied and that 

I x ly(x, O)l dx < ‘CO. (2.6) 
-aI 

For our own purposes the essential features of the Fourier transform are: (1) The 
DFT (2.3) generates a wavenumber domain representation of the initial wave which 
is called the Fourier spectrum; (2) The Fourier spectrum has simple time evolution 
given by Eq. (2.4); and (3) The IFT (2.5) evolves the initial wave in space and time. 
Analogs to these three steps are found in the structure of the scattering transform 
solution to the KdV equation as discussed in the following section. 

3. THE SCATTERING TRANSFORM SOLUTION TO THE KdV EQUATION 

The KdV equation describes the motion of small-but-finite amplitude, long waves 
in shallow water: 

‘?r + COYX + @vL + PLY = 0, -a<.s<x. (3.1) 

Here 2 = 3c,/2h; the other variables are defined with respect to (2.1). 
The direct scattering problem for a localized nonlinear signal which evolves 

according to (3.1) is the Schroedinger eigenvalue problem [4]: 

$ y.y + [%q(x, 0) + K’l $(-u) = 0, --a<x<m. (3.2) 

The constant parameter I., a measure of nonlinearity to dispersion, is given by 
jU = et/6p. The solutions to (3.2), with infinite-line boundary conditions, correspond 
to both real and imaginary wavenumber K. When the wavenumber takes on some 
real value IC = k/2 (division by the arbitrary factor of two ensures that the definition 
of wavenumber is compatible with that in the Fourier transform (2.3), see Sec- 
tion 4), then the eigensolutions have the following asymptotic boundary conditions: 

lim I/I(X) = u(k) exp( -ikx/2), (3.3) 
I--I 

lim tj(x) = exp( - ikx/2) + b(k) exp(ikx/2). (3.4) 
Y + X’ 

The coefficient b(k) in (3.4) is referred to as the DST continuous spectrum. 
When the wavenumber is imaginary K = iK,, the eigenfunction solutions to (3.2), 

(fi,,(x, K,,), are bounded only for a finite set of discrete eigenvalues K,, where 
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1 < n < N. Each eigenvalue corresponds to one of the N solitons in the discrete part 
of the DST spectrum. Each soliton is uniquely related to its amplitude by 
v,~ = 2K,T/1. The remaining part of the discrete spectrum is determined by taking the 
following normalization for the discrete eigenfunctions: 

J ‘% Y,;(x, K,,)~.Y= 1. (3.5) 
I 

Associated phase coefficients are then found from 

C, = lim exp(K,,x) Y’,, (x, K,,). 
Y’T 

(3.6) 

The collection of information {K,,, C,,, N} is the DST so&on (discrete) spectrum. 

The complete DST spectrum is given by the following set of information: 

DST= {K,,, C,,, N; h(k)). (3.7) 

Thus (3.7) is the direct scattering transform of a nonlinear wave evolving by (3.1) 
just as (2.3) is the direct Fourier transform of a linear wave evolving by (2.1). The 
connection between the DST and the Fourier transform is discussed in Section 4 
below. 

The time evolution of the DST spectrum is simple: 

K,,(t) = k’,,, 

C,,(r) = C,, exp(Q,,t)! 

N(t) = N, 
(3.8) 

h(k, t) = h(k) exp( - iot). 

Note the similarity of these equations with the time evolution of the Fourier spec- 
trum (2.4). The linearized dispersion relation for the KdV equation (set x =0 in 
(3.1) to get (2.1)) can be written in terms of the wavenumber K of the Schroedinger 
eigenvalue problem (3.2): Sz = K(c”-~~K’). Then the dispersion relations for the 
discrete (K = iK,) and continuous spectra (X = k/2) follow: 

Q,, = K,, (co + 4BKf )9 (3.9a) 

w  = k( cg - /I/?). (3.9b) 

These relations are used in (3.8) to evolve the spectrum in time. 
The inverse scattering transform (IST) (in analogy with the IFT for linear wave 

motion) evolves the wave in space and time. We now outline the mathematical 
structure of IST. One solves the Gelfand-Levitan-Marchenko (GLM) integral 
equation 

K(x, y)+B(~+y)+/~ K(x,z)B(z+y)dz=O, Y > x, (3.10) 
% 
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whose solution K(x, y) is used to find the wave amplitude for t #O: 

(3.11) 

The kernel of the GLM equation is given by 

B(r, t)= 2 Cz(r)exp(-K,r)+&jy h( k, t ) exp( ikr/2) dk. (3.12) 
n=l J; 

We have for convenience suppressed the time dependence in B(r, t) and K(x, y, t) 
in (3.10) and (3.11). This is possible because the solution to the GLM equation 
K(x, y, t) (3.10) may be considered to be a function of y only; x and t simply play 
the role of parameters in the formulation. 

The phase coefficients C, in (3.6) depend upon the normalization (3.5) for the 
eigenfunction solutions tin(x, K,) to (3.2). This implies that knowledge of these 
functions is necessary before the C, may be found. An alternative expression for the 
C, which is independent of the $,,(x, K,) is given by [l, 341: 

Ci = -irn, (3.13) 

where the r, are the residues of the reflection coefficient b(k) at the poles K = iK,,: 

r,=&fHk)dk=i?imn (K-K,,)b(iK). 
- n 

(3.14) 

The right-hand side of this expression obtains because the poles of b(lc) are simple. 
Then the phase coefficients are given by 

CL’,?, = liFK (K-K,,) b(iK). (3.15) 
n 

Thus the latter expression makes computation of the C, independent of the 
$n(x, K,) and their integrability condition (3.5) a point we exploit in the numerical 
methods below. 

We also note that to compute the number of solitions a convenient formula is 

c71: 

N = >irnm [arg(a(k)) - arg(a( -k))]. (3.16) 

This turns out to be a good way to compute N because it too is independent of the 
eigenfunctions. We discuss the implementation of (3.16) in II. 

For the scattering transform to be valid the following integral condition must 
hold: 

s Oc (1 + 1x1) I+, ON dx< ~0. (3.17) 
-3c 
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Thus a localized wave field which vanishes rapidly as 1.x -+ co satisfies (3.17). In 
numerical applications the field ~(x, 0) is contained in some finite array (i.e., a 
space series); v](x, 0) is assumed to be identically zero outside the confines of this 
array; hence (3.17) is always satisfied. 

In summary, the features of the scattering transform solution to the KdV equa- 
tion which are of interest in the present context are: (1) The DST (3.2))(3.6) 
generates a spectral representation (3.7) of the input wave r](x, 0); (2) evolution of 
the spectrum in time is simple (3.8), (3.9); and (3) the IST (3.10))(3.12) evolves the 
wave in time. These three steps are analogous to those for the linear Fourier trans- 
form discussed in the last section. 

4. THE RELATIONSHIP BETWEEN THE FOURIER TRANSFORM 

AND THE SCATTERING TRANSFORM 

Here we briefly discuss the fact that scattering transform theory approaches 
Fourier transform theory as the wave amplitude becomes small. The inference is 
that for sufficiently small waves the effect of nonlinearity becomes insignificant and 
linear Fourier theory is recovered. We emphasize those aspects of the theory which 
are important to the development of the DST and IST algorithms and to a physical 
interpretation of the nonlinear wave motion. 

The Fourier (small-amplitude) limit occurs in the absence of solitons, i.e., when 
there are no discrete eigenvalues. A necessary and sufficient condition for no 
solitons is that ~(x, 0) be negative definite. We first write the Schroedinger eigen- 
value problem (3.2) as an integral equation [35]: 

I)(X) = exp( -&x/2) - i JI, exp(ik Ix - x’//2) ~(x’, 0) $(x’) dx’. (4.1) 

This expression implicitly contains the boundary conditions (3.3) and (3.4) for the 
continuous spectrum. To see this we write (4.1) as 

t)(x) = exp( -&x/2) - 1 Jr exp(ik(x - x’)/2) ~(x’, 0) $(x’) dx’ 
z 

-- li 1: exp(ik(x’ -x)/2) ~(x’, 0) $(x’) dx’. 
I 

(4.2) 

If we take the limit as x + + a3 we recover (3.3) and (3.4) with explicit expressions 
for a(k) and b(k) in terms of integrals over the initial wave ~(x, 0) and eigenfunc- 
tion G(x): 

a(k)= 1-g exp(ikx’/2) 9(x’, 0) $(x’) dx’, (4.3) 
x 

b(k) = $11”. exp( -ikx’/2) yl(x’, 0) $(x’) dx’. (4.4) 
-c 
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Thus after solving (3.2) for q(x) one can formally obtain a(k) and the continuous 
DST spectrum b(k) by (4.3) and (4.4). As previously pointed out, however, we shall 
avoid computation of the eigenfunction $(x) (they are not part of the DST 
spectrum and hence need not be computed) in the numerical methods which follow; 
simpler means for computing a(k) and h(k) are used instead. 

Equations (4.3) and (4.4) are nevertheless useful for establishing the behavior of 
the DST in the small amplitude limit; the integrals are assumed to be small, so that 
a Neumann series expansion is possible and we take as a first approximation 
$(O)(x) 2 exp( - ikx/2), and this, when inserted back into (4.1), gives 

$“l(x)Zexp(-ikx/2)-$J~z exp(ik 1.x - x’(/2) ~(x’, 0) cc/‘“‘(x’) dx’, (4.5) 

a result often referred to as the Born approximation. To this order, approximate 
expressions for u(k) and b(k) are: 

a”‘(k) Z 1 - ; j” iy(x, 0) dx, 
-L 

(4.6) 

-ikb”‘(k) E 1.1 x‘ q(x, 0) exp( -ikx) dx. (4.7) 
-, 

Thus a”‘(k) is related to the area under the initial wave, while -&h”‘(k) is just 
the Fourier transform of i.q(x, 0). This establishes the connection between the 
continuous part of the scattering transform and the Fourier transform. Formally we 
write for sufficiently small q: 

-ikb(h)~Ij~ q(x,O)exp(-ikx)dx. 
x 

(4.8) 

Note that our use of K = k/2 in the Schroedinger eigenvalue problem (3.2) has 
resulted in a DFT limit (4.8) consistent with the notation used in our definition of 
the DFT (2.3); this motivates division by a factor of 2 in the wavenumber (3.12). 

It is important to establish under what specific conditions we can expect the DST 
to give results equivalent to the Fourier transform. A crude estimate can be made 
by letting ~(x, 0) be a square wave centered on the origin, with amplitude y0 and 
half-width L, and then (4.6) and (4.7) may be integrated exactly. Given that these 
integrals must be small for the small amplitude (Born) approximation to be valid, 
we have 

Thus for sufficiently large wavenumber or small amplitude, the DST approaches the 
Fourier transform. To consider what happens at long wavelength (small k) we note 
that for some fixed ‘lo the Fourier transform limit (4.9) must fail as k -+ 0. Details 
of this effect and its physical consequences on shallow water wave motion are 
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discussed in [26] and cited references. The small amplitude limit condition (4.9) is 
necessary for demonstrating that the DST numerical algorithm (Section 11) has the 
Fourier limit for sufficiently small amplitudes (see Section 12). 

To obtain additional physical insight we put the condition (4.9) into dimen- 
sionless form. In the Schroedinger problem (3.2) we set ~(x, 0) = q,,,u(x) and 
x = Lr, where qmax is the maximum value of ~(x, 0) and L is a characteristic length 
of the initial wave. This gives the dimensionless Schroedinger problem, 

lClrr + [4,4r) + x21 ti = 0, (4.10) 

where jwu = Au],,, L2 is the Ursell number ([36] and cited references) and x = kL is 
a dimensionless wavenumber. Then condition (4.9) is equivalent to 

(4. I 1 ) 

Thus the Born approximation qf quantum mechanics corresponds to small &sell 
number in nonlinear, shallow water waue dynamics. Physically, a small Ursell number 
occurs when nonlinear effects are small; conversely, a large Ursell number 
corresponds to the case when nonlinear interactions among spectral components 
are enhanced due to large waves. Note also that (4.9) may be thought of as a sprc- 
tral Ursell number, ;lk = 3yo/k2, i.e., an Ursell number associated with each radia- 

tion component in the spectrum. Computation of E,, provides an estimate of how 
strongly a spectral component interacts with its neighbors: i,, < 1 for small interac- 
tions, jwk - 1 for moderate interactions, and i., 8 1 for strong interactions. The linear 
Fourier transform limit of the DST (4.8) occurs for small spectral Ursell number, 
&.< 1. 

We now consider the small amplitude limit of the inverse scattering traruform. 

Since no solitons are present, (3.12) can be written: 

B(2x, t)=&i” h(k) exp[i(kx - wt)] dk. 
7 

(4.12) 

Segur [37] has shown that the GLM equation may be expanded in a Neumann 
series for small amplitude waves; the first term in this expansion results from 
ignoring the integral term of the GLM equation (3.10). With (4.12) this leads to 
(for small q): 

%q(x, t) % & [T [ - ikh(k)] exp[i(kx - ot)] dk. 
wa 

(4.13) 

Thus for sufficiently small amplitude the wave motion is recovered at t = 0 and is 
evolved in time thereafter by the inverse Fourier transform. Equation (4.13) is 

clearly the inverse of (4.8) (compare to (2.3) and (2.5)) and the connection of IST 
with linear Fourier theory is evident. Note that F(k) z -ikh(k)/i in the small 
amplitude limit. The linear Fourier transform limit (4.13) of the IST (3.10)-(3.12) 
is seen to occur generally when the spectral Ursell number is small, I., < 1. 
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5. ASSUMPTIONS IMPLICIT IN THE DISCRETE, 
FINITE FOURIER TRANSFORM 

Before proceeding to the development of numerical methods for the DST we first 
review some of the important considerations which historically lead to discrete 
algorithms for the Fourier transform. Two of the most important signal processing 
problems relate to the use of Fourier series (for signals periodic on an interval 
(0, L)) and the Fourier transform (for nonperiodic signals on the infinite interval). 
The theoretical properties of Fourier series and Fourier transforms differ somewhat, 
but, fortunately for most practical problems in data analysis, their digital computa- 
tional procedures are normally the same [2]. This results from the fact that only 
a finite range Fourier series or transform can be computed from digital signals and 
normally this finite range is taken to be the period of an associated Fourier series. 
The above observation ultimately motivated the detailed study of periodic nonlinear 
Fourier analysis [22-30, 38421. 

We are thus led to a discussion of the finite Fourier transform. We first restrict 
the limits of (2.3) to a finite spatial interval (0, L) on which there lies a localized 
initial wave ~(x, 0) which is taken to be zero outside this interval: 

F(k) = 1’ q(x, 0) exp( - ikx) dx. 
0 

(5.1) 

We further assume that ~(x, 0) is sampled at A4 equally spaced values of x a 
distance Ax ( = L/M) apart so that x, = m Ax and 

vm = vr(m Ax, 01, m=O, 1,2, . . . . M- 1. (5.2) 

For arbitrary wavenumber k the discrete version (rectangular approximation) of 
(5.1) is 

M-l 

F(k) = Ax 1 q,,, exp( - ikx,). (5.3 1 
m=O 

One then selects discrete wavenumbers for evaluation of F(k): 

j=O, 1, 2, . . . . M- 1. (5.4) 

The Fourier components are then found from 

M-1 
F(kj) = Ax 1 

m=O 

vrn exp( - ik,x,) = k ME ’ qrn exp[ - 2ni(jm/M)], (5.5) 
m=O 

where Ak = 271/L. The right-hand side of (5.5) is often referred to as the definition 
of the discrete, finite Fourier transform whose mathematical properties have been 
studied in detail [3]. The components of ll;(k,) are unique only out to the Nyquist 
frequency which occurs for j= M/2. 
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The easiest way to evaluate (5.3) or (5.5) numerically is through the simple recur- 
sion relation 

F,(k)=F,,-,(k)+~,~~“~Ax, (5.6) 

where F_, (k) = 0 and z = exp(i Ax). It is clear that such an algorithm requires M’ 
operations (ranging over both space x and wavenumber k), where an operation is 
defined as “multiplication of an exponential times an amplitude, followed by a sum- 
mation.” Fast Fourier transform (FFT) techniques allow the F(ki) to be computed 
by an algorithm equivalent to (5.5), (5.6) but which requires only M(log M) opera- 
tions. Herein we develop an algorithm for the direct scattering transform which is 
analogous to (5.6), i.e., two-point recursive. Development of this DST algorithm, 
however, is not as simple or obvious as the step from (5.3) or (5.5) to (5.6) for the 
Fourier transform. A “fast” DST algorithm must await future developments. 
Nevertheless it is important to note that we are seeking a numerical algorithm 
which has discrete Fourier structure. 

Some points are worth noting about the assumptions implicit in the above proce- 
dures. First, in the context of numerical analysis (as opposed to data analysis), note 
that while the rectangular approximation was used for evaluation of the integral 
(5.1) corrections to (5.1) for trapezoidal and higher order approcimations can be 
made if desired (for a discussion and references see Ng [43]). The usual procedure 
in signal processing applications, however, is to employ the FFT algorithm (based 
upon (5.5) which is equivalent to the two-point recursive formula (5.6)) for the 
spectral analysis of data and of other (say computer generated) digital signals 
[2, 31. No corrections are normally considered at higher order, primarily because 
of ignorance about the behavior of the signal at intermediate locations between the 
discrete points. In the analysis of data one normally measures a time series of 
several thousand points with a small discretization interval (in either time or space) 
and this implies that higher order corrections are likely not very significant. 

An important consideration about the infinite-interval Fourier transform F(k) 
relates to how the wavenumbers are selected for numerical computation. Based 
upon known results for the periodic Fourier transform, a convenient wavenumber 
resolution is (see (5.4)) 

Ak = 271/L, (5.7) 

where L is the period. The upper frequency cutoff is given by the Nyquist wave- 
number 

k, = x/Ax. (5.8) 

Theoretically one assumes knowledge of the wave amplitude over the entire 
(infinite) real axis. This implies that knowledge of all wavenumbers are necessary 
to reconstruct the wave. In numerical computation of the infinite-interval Cauch?, 
problem one normally measures or generates a discrete signal which is appreciably 
different from zero only on some interval (0, L) and which is assumed to be zero 
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everywhere outside this interval. The implication is that the signal has infinite 
length and according to (5.7) we have Ak + 0. Thus the wavenumber k is essentially 
continuous, a known result of Fourier transform theory. What this means in a prac- 
tical sense is that while (5.7) forms some basis for resolving the wavenumbers, one 
can deviate from this and use a smaller wavenumber resolution in the spectrum if 
desired. The Nyquist cutoff given by (5.8) must also be selected with care. One must 
use a sufficiently small Ax to ensure that the interval (0, kN) contains most of the 
spectral energy. Otherwise aliasing of spectral components may occur just as in 
linear Fourier analysis. Furthermore, one must keep in mind that the finite Fourier 
transform (5.5) is a periodic algorithm; the true infinite-line Cauchy problem is 
approached only as L + a. 

6. TOWARD A DISCRETE ALGORITHM 

FOR THE DIRECT SCATTERING TRANSFORM 

In the previous section we saw that the assumptions leading to the discrete, finite 
Fourier transform include: (1) truncation of a localized discrete signal to some 
finite interval (0, L) and (2) rectangular approximation of the Fourier integral. 
These result in (5.3) and, with an appropriate selection for the wavenumbers, one 
finds (5.5), which is the finite Fourier transform. In order to develop a numerical 
algorithm for the DST we shall consider (5.3) as fundamental (thus deferring selec- 
tion of the wavenumbers to a later section) and proceed to find an algorithm which 
approaches (5.3) when the wave amplitude becomes sufficiently small. Thus (5.3) is 
an important guiding criterion in what follows. In this way we develop nonlinear 
spectral methods which are compatible with known discrete Fourier methods. 

In order to pursue an algorithm for the direct scattering transform we consider, 
as before, a discrete signal with amplitudes at coordinate positions X, = m Ax, 

where dx is a constant spatial interval between points and 0 d m d M - 1 (we could 
also generalize the results to a finite element analysis in which dx is not constant, 
but we do not pursue this here since dx is normally constant for measured data and 
for computer generated space or time series). In order to truncate the signal to 
some interval (0, L) = (0, (M - 1) dx) we assume that all wave amplitudes are zero 
to the left of and including x,, and to the right of and including x*,. Recall that 
the rectangular approximation (5.3) for the Fourier integral (5.1) implies 
17(x, 0) exp( -ikx) is a (complex) constant in each interval Ax. Since this product 
of amplitude and exponential do not appear explicitly in the Schroedinger eigen- 
value problem it does not appear straightforward to use the same form of 
rectangular approximation here. 

However, we have been able to develop an alternate discretization which, for 
practical purposes, works rather well (see Fig. 1). A continuous wave amplitude 
function q(x, 0) (Fig. la) is discretized at intervals x,, = m Ax(q(x,, 0), Fig. lb). 
The discrete signal is then replaced by a piecewise constant function as shown in 
Fig. lc. Each constant partition has width Ax centered on coordinate x,,,; the con- 
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FIG. 1. An initial wave amplitude function v(.Y, 0) which varies contmuously as a function of Y is 

shown in (a) and is discretized at intervals dx in (b). In (c) one associates a piecewise constant function 

with the discrete array (b). This latter function (c) is then used in the development of the numerical 

algorithm for the direct scattering transform (DST). 

stant amplitude q,,) in each interval is assumed to be the same as the amplitudes of 
the previous discretization procedure for the Fourier transform. In selecting this 
form for the wave amplitude function we are also motivated by the fact that the 
Schroedinger eigenvalue problem has an exact solution for functions of this type. 
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Since we consider a signal of this kind to be almost as good as the original rec- 
tangular approximation to (5.1) we would like to compare the Fourier transform 
of the two types of wave forms. For the piecewise constant signal one easily finds 
for the Fourier integral 

(6.1) 

a result which is amazingly close to (5.3), differing only by the factor in square 
brackets. This factor acts essentially as a filter which relates the Fourier spectrum 
F(k) (5.3) for a discrete signal to the Fourier transform F,(k) (6.1) for a piecewise 
constant signal. We set 

sin(k AX/~) 
W Ax)= (k Ax,2) (6.2) 

A graph of this function is shown in Fig. 2. For k Ax sufficiently small S(k Ax) 1 1, 
and we have F,(k) z F(k). Thus the Fourier transform for the discrete and 
piecewise constant signals are essentially equal for sufliciently small wavenumber. 
The filter S(k Ax) slowly and monotonically decreases towards its first zero at 
kO = 2n/Ax. The Nyquist wavenumber occurs at half this value k,v = k,/2 = x/Ax, 
where S(k Ax) has decreased to 0.64. 

It is important at this point to understand what influence the filter (6.2) may 
have on the physics of the DST spectrum (as derived below in Sections 8-l 1). In 

t 

XkAx) 

k# k N= n,Ax 

0 kc 7x/8 x/4 3x18 n/2 

kAxi2 

FIG. 2. Shape of the filter which relates the direct Fourier transform (DFT) of a discrete function 
to the DFT of a piecewise constant function. 
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A c K(&,,) 
j (b) 

FIG. 3. A piecewise constant wave amplitude function a(~,,,, 0) (a) corresponds to a piecewise linear 
solution to the Gelfand-Levitan-Marchenko integral equation (b). 

problems of water wave motion a wavenumber cutoff beyond which KdV evolution 
does not apply is given approximately by k, = I/h. (The is because the long wave 
assumption is no longer valid for larger wavenumbers much greater that k,..) 
Normally k, /kN - 0.01-0.1 [26] and for k $ k,. the DST spectrum approaches the 
Fourier transform. Thus in the wavenumber range in which KdV physics is impor- 
tant (0, k,.) one can normally arrange for S(k Ax) to be near one (by making dx 
sufficiently small so that S(k Ax) z 1) and one need not be concerned with the 
presence of the filter. One can always remove the filter from the spectrum by 

dividing the continuous DST spectrum by (6.2) if a direct comparison with the FFT 
is desired. This latter procedure is recommended in practical implementations of the 
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algorithm (see II). Another important point is that since the filter differs from 1 
only at high wavenumbers (if the Nyquist wavenumber is chosen large enough), 
where the physics is essentially linear, it is unlikely that nonlinear effects can 
strongly influence the actual shape of the filter for the DST spectrum. 

Another additional concern is to establish what effect the selection of a piecewise 
constant wave form has on the algorithm for the inwrsr scattering fransform, i.e., 
for the selection of a numerical method for the solution of the GLM equation 
(3.10). The relationship between the solutions of GLM, K(x, x), and the solution of 
KdV, ~(x, 0) can be seen by rewriting (3.11) as 

(6.3) 

We write the discrete (piecewise constant) form for (6.3): 

K n,+ - -; Ax 5 vi, ,. I,2 - (6.4) 
, = ,,I 

This implies that in order to be consistent with our selection of a piecewise constant 
wave, the solution of the GLM equation must be trapezoidal as shown in Fig. 3b. 
K(x, x) is a piecewise linear fuction evaluated at the positions x,+ 1:Z, i.e., at the 
half-integers m + 4 = i, $, :, . . . . M+ f. The initial (piecewise constant) wave may be 
recovered by the obvious discrete formula (see Fig. 3): 

2 (K,,,+,,~-K~-I/I) 
Ylw,=j 

Ax 
(6.5) 

Thus our discretization procedure for the DST (developed by analogy with Fourier 
analysis) has led to the need for an IST procedure which is trapezoidal. A 
trapezoidal algorithm for solving the GLM equation has been given by Hald [44]. 
Paper III discusses implementation of the GLM algorithm for nonlinear filter 
applications and for evolving wave motion forward or backward in time. 

7. SEARCHING FOR A DST NUMERICAL ALGORITHM 

FROM AVAILABLE NUMERICAL METHODS 

In this section we briefly survey existing numerical methods for solving the 
Schroedinger eigenvalue problem. Even though, to our knowledge, no one else has 
attempted to solve this problem in the context of Fourier analysis, we originally 
anticipated no great difficulty in adapting the work of others in the present context. 
Thus our original hope was to discover some previously developed algorithm(s) 
which would satisfy the guiding criteria set forth in the previous section. To this end 
we now briefly review four frequently used techniques for numerically integrating 
the Schroedinger equation. 
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(1) “Shooting” or step-by-step methods. These are based on the finite-dif- 
ference scheme in which the second derivative of the eigenfunction at some point x 
is approximated from values of the eigenfunction at x, x _+ Ax, x _+ 2 Ax, etc. One 
uses a numerical integrator and “shoots” the eigenfunction from one boundary to 
the other for a given value of the wavenumber K. The value of K is varied so as to 
fulfill the boundary condition at the second boundary. Useful references for this 
method are 145-511. 

(2) Finite-element methods. One divides the domain into regions where the 
amplitude function (a “potential”) does not change rapidly. Then one replaces the 
amplitude function by a piecewise constant (or piecewise linear or quadratic) func- 
tion. In each partition the eigenfunction is then exponential (or described by Airy 
functions for a piecewise linear or parabolic cylinder functions for a piecewise quad- 
ratic eigenfunction). Then one ensures continuity of the eigenfunction and its first 
derivative between partitions and tinally one satisfies the boundary conditions to 
obtain the solution [52-551. 

(3) The spectral [54] or RayleighhRitz-Galerkin [56] method. One expands 
the eigenfunctions in some basis which may or may not be orthogonal and one 
seeks the solution of the associated secular equation. The basis is normally selected 
so that the matrix elements are easy to compute, for example, by sines [57], splines 
[SS], or Gaussians [59]. Other useful references are [60-631. 

(4) Global matrix methods. The finite-difference methods can be expressed in 
matrix (or global) form [60, 64-661. Normally only a few off-diagonal terms are 
taken; Pade approximants have been used to generalize the techniques to a larger 
number of off-diagonal terms [67]. A more thorough review of numerical methods 
for solving the Schroedinger eigenvalue problem is given in [67]. 

In an attempt to adapt some of the above available methods to our own use first 
note that the last section specifies that the wave amplitude y(x, 0) should preferably 
be treated as piecewise constant. We have therefore considered available methods 
in the finite-element class above as discussed in Refs. [52-551. Unfortunately we 
have not been very successful in carrying over the methods to our present applica- 
tion. We were unable to discover how to make these methods conform to many of 
the requirements of Section 6. We note that the paper by Canosa and Oliveira [52] 
comes closest to the spirit of what we are trying to accomplish: integration of the 
Schroedinger equation for a piecewise constant potential. Our formulation, guided 
by our requirements based upon nonlinear Fourier analysis, bears little resemblance 
to theirs, however. As far as we know the restrictions listed in Section 6 have not 
heretofore been placed upon the development of an algorithm for solving the 
Schroedinger eigenvalue problem. Because many of the requirements have not been 
addressed or satisfied in the literature, and because we were unable to discover how 
to modify available algorithms to suit our needs, we concluded that a search for a 
new algorithm might be appropriate. This led to the development of the methods 

58 i:94,2-4 
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described herein (which we call Fourier signal processing methods) as opposed to 
those methods most often cited in the literature (numerical analysis methods). The 
results of our research in this regard are given in the following sections. 

8. THE DST OF A RECTANGULAR INITIAL WAVE 

Our goal is to seek the solution to the Schroedinger eigenvalue problem for a 
piecewise constant wave amplitude function u](x, 0) (see Figs. 1, 3). To this end we 
first obtain the solution for a rectangular initial wave, the “particle in a box” 
problem, which is treated in standard quantum mechanics texts [68, 691. Here we 
review these methods from the standpoint of nonlinear spectral analysis in terms of 
the transfer or spectral matrix of the theory. This step is essential (1) for under- 
standing the details of the nonlinear Fourier approach, (2) for establishing the 
notation, (3) for extending the method to the more general case for r](x, 0) 
piecewise constant, (4) for making the connection between quantum mechanics and 
long wave hydrodynamics, (5) for extending the approach to the periodic problem 
[27-301, and (6) for rigorous checkout of the numerical algorithm (see II). We take 
~(x, 0) to be a single rectangular initial wave pulse centered on the origin: 

rl(x, 0) = rlo, Ix1 6 a; 

= 0, /xl >a. 
(8.1) 

The solution to the Schroedinger eigenvalue problem is given by 

i 

A exp( 1’rcx) + B exp( - 1’1cx); xc-a 

I)(X) = C exp(i[x) + D exp( - iix); -agx<a (8.2) 

E exp( 1’rcx) + F exp( - ilcx); x>a 

where A-F are complex constants depending upon the wavenumber JC; also 

c = (&fo + Ic2p2. (8.3) 

Ii/(x) and $,(x) are continuous at both x = f a, so that matrices may be computed 
between coefficient pairs of (8.2): 

(8.4) 

The matrices T1 (K) and T2 ( K) are given by 

(1 + i/K) expC4K - ibl (1 -i/K) exPCi(K + ibl 
(l-</K)exp[-i(K+i)a] (l+i/K)exp[-i(K-[)a] 

(8.5) 

(l+~/i)exp[i(K-[)a] (l-K/i)expC-i(K+i)al 

(1 -K,/[)exp[i(K+[)a] (l+K/[)exp[-i(K-[)a] 
(8.6) 
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Thus 

(;)=M(r)(;); M(K) = T, (K) T?(K), 

where 

M(ti) = 
[cos 2&2 - id sin 2[a] exp(2irca) - ig sin 2[rr 

ij, sin 2[a [cos 2[a + id sin 2[a] exp( - 2irca) 

63.8) 

with ‘i+;); &;(i+;). (8.9) 

Note that det M = M,, M,, - M12M,, = 1 and that for real wavenumber K = k/2, 

M,,=MIL,t M2I = M;I;. The matrix M(K) (8.8) plus boundary conditions (3.3) 
(3.4), and (3.6) entirely describe the solution to the spectral eigenvalue problem 
(3.2). This formulation provides an immediate and direct means for obtaining the 
DST of the square pulse (8.1) as we now discuss. 

In order to compute the continuous part of the DST spectrum we set K = k/2 and 
use the boundary conditions (3.3), (3.4) in (8.7): 

=M(K=i;r/2) ":I . 

i !  

(8.10) 

This leads to simple expressions for the coefficients a(k) and b(k) in terms of the 
matrix elements of M = M(k/2): 

a(k) = 
1 exp( - ika) 

M, , (k/2) = (cos 2ja - i6 sin 2ia)’ 

Mn(W) 
b(k) = -M, I (k,2) = vu(k) sin 2&z, 

(8.11) 

(8.12) 

where we have used the fact that det M= 1. Thus, after computing the matrix 
M = M(k/2) the continuous part of the spectral transform b(k) easily follows. 

For the discrete spectrum we use (3.6) in (8.7) and set K = iK,, to find 

(8.13) 

The constant D, arises because we take 

lim $,,(.x, K,) = D, exp(K,x). 
x--r -cr 

Equation (8.13) is satisfied at the eigenwavenumbers K,, (or soliton amplitudes 
rl,> = 2K,/A). Thus the zeros of 

M,,(iK,)=2K,,i,-(ii-K,.f)tan2[,a=O, (8.14) 
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or the poles of b(iK,) = -M,, (iK,)/M,, (X,), give the eigenvalues K,. Equation 
(8.13) together with (3.5), can be solved for the normalization coefficients C,, D,,. 
Their ratio may be found from 

$= -M12(iK,)=i~,sin2i,,a= +l, 

The added constraint (3.5) must be imposed in order to fix the constant D,. In the 
present case C, = + D, because the symmetric rectangular pulse has been centered 
about the origin; for the plus sign the eigenfunction solution I/~ (x, K,) is an even 
function, while for the negative sign it is an odd function. 

Phase coefficients independent of the eigenfunctions tjn(x, K,) may be found 
from (3.15) and (8.12): 

y. sin 2(a exp(Ka) 

” = A%, (K- Kn) (cos 2[a + 6, sin 2[a)’ 

where 

(’ = (%r/, - K’)‘:‘, 

(8.16) 

(8.17) 

Thus the eigenvalues K, are found numerically from (8.14) and the C, are found 
by numerical solution of (8.16) and (8.17). 

The number of solitions is likewise easy to find: 

N= W~oY’2a + 1, 

7x 
(8.18) 

For the above simple case of an initial rectangular wave pulse the DST has been 
reduced to computing the matrix M (which is often called the transfer matrix, but 
which we prefer to call the spectral matrix in the present application) as given by 
(8.8) and, subsequently, using (8.14), (8.16), and (8.18) to compute the discrete 
spectrum and (8.12) to compute the continuous spectrum. Note that we place spe- 
cial emphasis on the spectral matrix M(K); given this matrix the DST spectrum easily 
follows. The emphasis remains on this matrix in the numerical model described 
below. This formulation has the added advantage that the spectral matrix is easily 
related to the monodromy matrix of periodic KdV theory [27, 28, 32, 381; extension 
of our algorithm to the periodic scattering transform is thus straightforward. 
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9. THE DST OF A PIECEWISE CONSTANT INITIAL WAVE 

To generalize the results of the last section to an initial pulse or packet of 
arbitrary shape (see Fig. 3a) we assume that the continuous function Q-(X, 0) can be 
discretized into A4 values at intervals Ax in the spatial variable x as shown in 
Fig. 3b; this gives discrete amplitudes iv,,,} at coordinate values {x,}. We then 
associate with this discrete array the piecewise constant, discontinuous function 
(shown in Fig. lc) defined by 

v(x, 0) = r,,, x,,-,;?<x<x,+,.‘2 
(9.1) 

= 0, x<x,,x>x,-,, 

where we have assumed that q(x, 0) =O outside (x,, x~) for consistency with the 
localization condition (3.17); note for later convenience that we also take 

VO=Yl=VM- I =y1~=0 and that 

x,, = m Ax. (9.2) 

Based upon considerations discussed in the last section, the spectral matrix M(ti) 
for the function (9.1) is given by 

M(K) = fi T,(x;,, i,m t’,, , )t (9.3) 
,?I = 0 

where the matrix T, has the form 

T,,(xin> im i,+,) 

1 (1 +L+ ,/L)cxPCi(L,+, 

i 

-4JxLl (l-r,+I/i,)expC-i(r,,+I+i,)x:,l 
==z (1-i ,+,li,,)exPCi(i,l+l+i,)~dl (l+i,,+,/i,~)expC-i(i,,+,-i,,)x~,l 1 

(9.4) 

and 

[,, = [iv, + K2] ‘j2, (9.5) 

x:, = x,, + AX/~. (9.6) 

The matrix M has unit determinant and for real wavenumber IC = k/2, Mz2 = M;“, , 

and M,, = M&. Note that the integer m ranges over the number of discrete points 
in the initial wave pulse, 0 <m < M. The integer m is not to be confused with the 
integer n which ranges over 1 <n <IV, where N is the number of sohtons. 

Given the matrix M(k) (9.3) (9.4) we can compute the continuous spectrum b(k) 
in analogy with (8.12) by setting ti = k/2: 

b(k)= - 
M,, (k/2) 

M,, (k/2)’ 
(9.7) 



306 A. R. OSBORNE 

The wavenumber k is, of course, continuous in the range (-co <k-c co), where 
h( -k) = b*(k). The procedure which we use to select the wavenumbers at which 
(9.7) is to be evaluated follows (5.4); a discussion is found in II. 

To find the discrete spectrum we use K = iK, and search the range 0 < VI,, 

( = 2M4 6 27L,, 2 where rmax is the maximum value of the amplitudes {ye,}. The 
eigenvalues are the zeros of (recall (8.14)): 

M,,(iK,)=O. (9.8) 

Then the phase coefficients are computed as the residues of the reflection coefficient 
(which correspond to the discrete eigenvalues): 

Ci = JiiK (K - K,) b(K). 
n 

(9.9) 

The number of solitons may be computed from the transmission coefficient a(k) 

iI71: 

N= )\mx {arg[4k)l- argC4 -k)l>, (9.10) 

where as before (8.1 l), 

(9.11) 

This completes our discussion of the exact solution to the Schroedinger eigenvalue 
problem (and the associated exact form of the DST spectrum) for a piecewise 
continuous initial wave. 

10. FACTORIZATION OF THE SPECTRAL MATRIX INTO SU(2) ROTATIONS; 
A WELL-BEHAVED FORM FOR THE DST ALGORITHM 

While Eqs. (9.3)-(9.11) give the exact solution to the Schroedinger problem for 
a discrete wave (9.1), they do not turn out to be very useful for computational pur- 
poses. The reason for this unfortunate circumstance is due to “exploding exponen- 
tial? which may occur during the search for the discrete eigenvalues. This results 
in large roundoff errors and in numbers which may exceed the range of most com- 
puters. These difficulties can be alleviated however by noting that the T, matrix 
may be factored as 

(10.1) 
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where the matrices Q,, R,, and S, are W(2) rotations and are given by 

Qm= o 
( 

exp( - X,xL) 0 

exp(GA) 

R = cos(OJ2) isin(BJ2) 
n, 

( i sin(8,/2) cos(8,/2) > 

s = expGL,+kJ 0 
m 0 ev( - 3, + , -4,) > ’ 

where 

(10.2) 

(10.3) 

(10.4) 

(10.5) 

(10.6) 

Here [,,, is given by (9.5). 
If the factored form for the T, matrix is inserted back into the expression for the 

spectral matrix (9.3), we find, after collecting matrix elements as a function of 
Ax=x,+,-x,, 

M = BM’A, (10.7) 

where 

and 

M-l 

M’ = n AT,, (10.8) 
m=l 

B = exp[ - I’~(-q, + AX/~)] 0 

0 eXp[iK(.q, + Ax/it)] 
(10.9) 

A= exP[I’K(XM---x/2)1 

! 

0 

0 exp[ -I’K(x, - AX/~)] 
(10.10) 

In (10.8) we have the “delta T,” matrix, AT,, which is a function of Ax rather than 
x,, and is given by 

AT, = 

i 

(L+L+1) (L-1,+1) 
xv, 

exp( -ii, Ax) 
2L 

exp( -ii, Ax) 

(im-im+l) (L+im+L) 

i 

. (10.11) 

xn 
ev(iL,, Ax) 

xn 
exp( ii, Ax) 



308 A. R. OSBORNE 

Note that the terms ([,+ l/[m) l/2 in (10.1) have canceled out in the computation of 
(10.11). 

Eqs. (9.3)(9.6) are equivalent to (10.7))(10.11); thus the latter equations also 
give the exact solution to the Schroedinger problem for a piecewise constant wave 
form. However, the latter formulation is a function of Ax rather than x,. Thus the 
problem of exploding exponentials is much reduced because Ax is typically a rather 
small number compared to x,, which ranges up to the length of the discrete initial 
wave. Furthermore, roundoff error is also reduced because each of the LIT,, 
matrices is 0( 1). Another advantage of this formulation is that recursion relations 
exist for the M’ matrix. These relations, which we discuss in the next section, lead 
to a significant increase in the speed of the DST algorithm. 

11. RECURSION RELATIONS FOR THE DST ALGORITHM 

To develop recursion relations for the M matrix we rewrite ( 10.11) as 

AT, = snlz-i”’ ” d/m 

d, zim ,im 
Swl~ 

where 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

With a little work we find that the matrix M’ may then be written 

M-l 

M’= n AT,= 
Z--‘FMpl(z) z ---‘G,m , (z) 

PII=1 

zp,vm,G MP1(1/2) > P-‘FM-*(l/Z) ’ 
(11.5) 

such that F,(z) and G,(z) satisfy the recursion relations 

(;$)=(;, ;$I)($;$;) 

with 

and 

F,(z) = 1, G,(z) = 0 

(11.6) 

(11.7) 

(11.8) 
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We now make the following small amplitude expansions: 

i,sk(l +24,)/2; A, = 3.q,/k2 (12.6) 

s,zl +Aq,; 4m = Am, I- A,, (12.7) 

d,s -Aq,. (12.8) 

Note that A, of (12.6) is the “spectral Ursell number” (4.9) which intuitively must 
be small to recover the Fourier limit. Eqs. (12.6)-( 12.8) lead to an approximate 
expression for (11.8), 

(12.9) 

and to first order the recursion relations (11.6) become 

Upon iterating (12.10) beginning with F, = 1 and G, = 0 (retaining only terms at 
first order in amplitude), we find the following expressions for FM-, , G, _ , : 

M-l 

F -I+ c 4, ‘b-1= (12.11) 
m=l 

M-l 

G M-l M--l= -Zo c Ar/m~-m. (12.12) 
m= 1 

If we take (as mentioned previously in Section 9) q0 = vi = qM _ i = qM = 0, then 
after some manipulation, 

F -1 M-l= (12.13) 

M~l 2 -zgM--112 
i,4. sin(k AX/~) M - 1 

G - 
k (k Ax/2) 

Ax 
1 

1 qmexp(-ikx,). (12.14) 
Wl=O 

Finally (12.13), (12.14) are inserted into (12.4), (12.5) and we find the discrete for- 
mulas (12.1), (12.2). Thus the recursive algorithm for the direct scattering transform 
approaches the Fourier transform (12.1), ( 12.2) for small amplitude waves. We note 
that the function GM_ 1 (z) reduces to the Fourier transform, while F,_,(z) 
degenerates to 1 in the small amplitude limit. The approximate recursion formulas 
(12.10) may be compared to (5.6) for the discrete Fourier transform. Even in the 
linear Fourier limit the structure of the direct scattering transform is indeed richer 
that the structure of the Fourier transform. 
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13. SUMMARY AND CONCLUSIONS 

In order to develop an algorithm for computing the direct scattering transform 
of a localized initial wave described by the Korteweg-de Vries equation we have 
used the discretization procedure shown in Fig. 1. A continuous wave amplitude 
function ~(x, 0) (Fig. la) is discretized into M points separated by equal intervals 
dx (as shown in Fig. lb). The discrete array is then associated with a piecewise con- 
stant function (Fig. lc), where the discrete points are centered inside each interval 
Ax. Then the Schroedinger eigenvalue problem (3.2) is solved exactly for this 
piecewise constant function; the solution may be formulated in terms of the spectral 
matrix M(K) which is found from the product of M “T matrices” (computed for 
each partition ds) by (9.3)-(9.6). This formulation is unfortunately dependent upon 
“exploding exponentials” exp(K.u) which introduce large roundoff errors and make 
computation of the discrete spectrum difficult. The problem can be alleviated by 
reformulating the solution in terms of “delta T matrices” which depend on Ax 
rather than x so that only exponentials of the form exp(K Ax) appear; the resultant 
formulation (10.7)-( 10.11) is then computationally reliable and accurate. The final 
step is to express the M(K) matrix in terms of recursion relations (11.5)-(11.8); 
these provide an efficient algorithm for computing the DST spectrum. Some 
justification for our approach is that: (1) it reduces to well-known discrete Fourier 
methods in the small amplitude limit; (2) it is compatible with the trapezoidal algo- 
rithm for the inverse scattering transform [44]; (3) it provides simple ways to 
estimate spectral errors in the analysis of noisy experimental data (paper II); (4) it 
may be extended [70] to the class of spectral problems due to Ablowitz, Kaup, 
Newell, and Segur [ 1, 51; and (5) it may be extended to solve periodic problems 
as well [ 19, 20, 32, 38, 70, 711. 
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